1.1. Pandas分析步骤
- 载入日志数据
- 载入area_ip数据
- 将 CDN_IP请求数 进行 COUNT。类似如下SQL:
1
2
3
4
5
6
7
8
9
10
|
SELECT inet_aton(l.cdn_ip),
count(*),
a.addr
FROM log AS l
INNER JOIN area_ip AS a
ON a.start_ip_num <= inet_aton(l.cdn_ip)
AND a.end_ip_num >= inet_aton(l.cdn_ip)
GROUP BY cdn_ip
ORDER BY count(*)
LIMIT 0, 100;
|
1.2. 代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
|
cat pd_ng_log_stat.py
#!/usr/bin/env python
#-*- coding: utf-8 -*-
from ng_line_parser import NgLineParser
import pandas as pd
import socket
import struct
class PDNgLogStat(object):
def __init__(self):
self.ng_line_parser = NgLineParser()
def _log_line_iter(self, pathes):
“”“解析文件中的每一行并生成一个迭代器”“”
for path in pathes:
with open(path, ‘r’) as f:
for index, line in enumerate(f):
self.ng_line_parser.parse(line)
yield self.ng_line_parser.to_dict()
def _ip2num(self, ip):
“”“用于IP转化为数字”“”
ip_num = –1
try:
# 将IP转化成INT/LONG 数字
ip_num = socket.ntohl(struct.unpack(“I”,socket.inet_aton(str(ip)))[0])
except:
pass
finally:
return ip_num
def _get_addr_by_ip(self, ip):
“”“通过给的IP获得地址”“”
ip_num = self._ip2num(ip)
try:
addr_df = self.ip_addr_df[(self.ip_addr_df.ip_start_num <= ip_num) &
(ip_num <= self.ip_addr_df.ip_end_num)]
addr = addr_df.at[addr_df.index.tolist()[0], ‘addr’]
return addr
except:
return None
def load_data(self, path):
“”“通过给的文件路径加载数据生成 DataFrame”“”
self.df = pd.DataFrame(self._log_line_iter(path))
def uv_cdn_ip(self, top = 100):
“”“统计cdn ip量”“”
group_by_cols = [‘cdn_ip’] # 需要分组的列,只计算和显示该列
# 直接统计次数
url_req_grp = self.df[group_by_cols].groupby(
self.df[‘cdn_ip’])
return url_req_grp.agg([‘count’])[‘cdn_ip’].nlargest(top, ‘count’)
def uv_cdn_ip_addr(self, top = 100):
“”“统计cdn ip量 地址”“”
cnt_df = self.uv_cdn_ip(top)
# 添加 ip 地址 列
cnt_df.insert(len(cnt_df.columns),
‘addr’,
cnt_df.index.map(self._get_addr_by_ip))
def load_ip_addr(self, path):
“”“加载IP”“”
cols = [‘id’, ‘ip_start_num’, ‘ip_end_num’,
‘ip_start’, ‘ip_end’, ‘addr’, ‘operator’]
self.ip_addr_df = pd.read_csv(path, sep=‘\t’, names=cols, index_col=‘id’)
return self.ip_addr_df
def main():
file_pathes = [‘www.ttmark.com.access.log’]
pd_ng_log_stat = PDNgLogStat()
pd_ng_log_stat.load_data(file_pathes)
# 加载 ip 地址
area_ip_path = ‘area_ip.csv’
pd_ng_log_stat.load_ip_addr(area_ip_path)
# 统计 CDN IP 访问量 和 地址
print pd_ng_log_stat.uv_cdn_ip_addr()
if __name__ == ‘__main__’:
main()
|
运行统计和输出结果
1
2
3
4
5
6
7
8
9
10
11
12
13
|
python pd_ng_log_stat.py
count addr
cdn_ip
140.205.127.2 31943 浙江省杭州市
101.200.101.203 26306 None
101.200.101.214 24667 None
......
140.205.253.155 4065 浙江省杭州市
140.205.253.174 4048 浙江省杭州市
140.205.253.131 3972 浙江省杭州市
[100 rows x 2 columns]
|
文章转载来自:ttlsa.com